| 
 
金桔 
金币 
威望 
贡献 
回帖0
精华
在线时间 小时
 | 
 
| 
平衡(运动)微分方程:
×
登陆有奖并可浏览互动!您需要 登录 才可以下载或查看,没有账号?立即注册 
    
 \frac{\partial\sigma_{x}}{\partial x}+\frac{\partial\tau_{yx}}{\partial y}+\frac{\partial\tau_{zx}}{\partial z}+F_{x}=0
 \frac{\partial\tau_{xy}}{\partial x}+\frac{\partial\sigma_{y}}{\partial y}+\frac{\partial\tau_{zy}}{\partial z}+F_{y}=0
 \frac{\partial\tau_{xz}}{\partial x}+\frac{\partial\tau_{yz}}{\partial y}+\frac{\partial\sigma_{z}}{\partial z}+F_{z}=0
 几何方程(柯西方程)- 应变和位移的关系:
 
 \varepsilon_{x}=\frac{\partial u}{\partial x} \gamma_{yz}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}
 \varepsilon_{y}=\frac{\partial v}{\partial y} \gamma_{zx}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}
 \varepsilon_{z}=\frac{\partial w}{\partial z} \gamma_{xy}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}
 物理方程 - 应力和应变的关系:
 
 \varepsilon_{x}=\frac{\sigma_{x}-\mu\left( \sigma_{y}+\sigma_{z} \right)}{E} \gamma_{yz}=\frac{2\left( 1+\mu \right)}{E}\tau_{yz}
 \varepsilon_{y}=\frac{\sigma_{y}-\mu\left( \sigma_{x}+\sigma_{z} \right)}{E} \gamma_{xz}=\frac{2\left( 1+\mu \right)}{E}\tau_{xz}
 \varepsilon_{z}=\frac{\sigma_{z}-\mu\left( \sigma_{x}+\sigma_{y} \right)}{E} \gamma_{xy}=\frac{2\left( 1+\mu \right)}{E}\tau_{xy}
 
 原文地址:https://zhuanlan.zhihu.com/p/57657300
 | 
 |